Powered By Blogger

Monday, November 24, 2008

Brief about Chlorofluorocarbons

Chlorofluorocarbons (CFCs), along with other chlorine- and bromine-containing compounds, have been implicated in the accelerated depletion of ozone in the Earth's stratosphere. CFCs were developed in the early 1930s and are used in a variety of industrial, commercial, and household applications. These substances are non-toxic, non-flammable, and non-reactive with other chemical compounds. These desirable safety characteristics, along with their stable thermodynamic properties, make them ideal for many applications--as coolants for commercial and home refrigeration units, aerosol propellants, electronic cleaning solvents, and blowing agents. Production and Use of Chlorofluorocarbons experienced nearly uninterrupted growth as demand for products requiring their use continued to rise.

Not until 1973 was chlorine found to be a catalytic agent in ozone destruction. Catalytic destruction of ozone removes the odd oxygen species [atomic oxygen (O) and ozone (O3)] while leaving chlorine unaffected. This process was known to be potentially damaging to the ozone layer, but conclusive evidence of stratospheric ozone loss was not discovered until 1984. Announcement of polar ozone depletion over Antarctica in March 1985 prompted scientific initiatives to discover the Ozone Depletion Processes, along with calls to freeze or diminish production of chlorinated fluorocarbons. A complex scenario of atmospheric dynamics, solar radiation, and chemical reactions was found to explain the anomalously low levels of ozone during the polar springtime. Recent expeditions to the Arctic regions show that similar processes can occur in the northern hemisphere, but to a somewhat lesser degree due to warmer temperatures and erratic dynamic patterns.

Replacement compounds for CFCs have also been evaluated for their Ozone Depletion Potential (ODP). Hydrochlorofluorocarbons (HCFCs) still contain chlorine atoms, but the presence of hydrogen makes them reactive with chemical species in the troposphere. This greatly reduces the prospects of the chlorine reaching the stratosphere, as chlorine will be removed by chemical processes in the lower atmosphere. Hydrofluorocarbons (HFCs), potential replacements for CFCs that contain no chlorine, have been evaluated for potential effects of fluorine compounds on ozone destruction. McFarland and Kaye give an overview of the CFC-ozone issue in the 1992 paper "Chlorofluorocarbons and Ozone."

No comments: